Analgesia Mediated by the TRPM8 Cold Receptor in Chronic Neuropathic Pain
نویسندگان
چکیده
BACKGROUND Chronic established pain, especially that following nerve injury, is difficult to treat and represents a largely unmet therapeutic need. New insights are urgently required, and we reasoned that endogenous processes such as cooling-induced analgesia may point the way to novel strategies for intervention. Molecular receptors for cooling have been identified in sensory nerves, and we demonstrate here how activation of one of these, TRPM8, produces profound, mechanistically novel analgesia in chronic pain states. RESULTS We show that activation of TRPM8 in a subpopulation of sensory afferents (by either cutaneous or intrathecal application of specific pharmacological agents or by modest cooling) elicits analgesia in neuropathic and other chronic pain models in rats, thereby inhibiting the characteristic sensitization of dorsal-horn neurons and behavioral-reflex facilitation. TRPM8 expression was increased in a subset of sensory neurons after nerve injury. The essential role of TRPM8 in suppression of sensitized pain responses was corroborated by specific knockdown of its expression after intrathecal application of an antisense oligonucleotide. We further show that the analgesic effect of TRPM8 activation is centrally mediated and relies on Group II/III metabotropic glutamate receptors (mGluRs), but not opioid receptors. We propose a scheme in which Group II/III mGluRs would respond to glutamate released from TRPM8-containing afferents to exert an inhibitory gate control over nociceptive inputs. CONCLUSIONS TRPM8 and its central downstream mediators, as elements of endogenous-cooling-induced analgesia, represent a novel analgesic axis that can be exploited in chronic sensitized pain states.
منابع مشابه
Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain Running Title: TRPM8 receptor-induced analgesia in neuropathic pain
General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edin...
متن کاملPharmacological Blockade of TRPM8 Ion Channels Alters Cold and Cold Pain Responses in Mice
TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various rol...
متن کاملThe Contribution of TRPM8 and TRPA1 Channels to Cold Allodynia and Neuropathic Pain
Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the ...
متن کاملTRPM8 mechanism of cold allodynia after chronic nerve injury.
The cold- and menthol-sensitive receptor TRPM8 (transient receptor potential melastatin 8) has been suggested to play a role in cold allodynia, an intractable pain seen clinically. We studied how TRPM8 is involved in cold allodynia using rats with chronic constrictive nerve injury (CCI), a neuropathic pain model manifesting cold allodynia in hindlimbs. We found that cold allodynic response in t...
متن کاملEffects of Nefopam on Streptozotocin-Induced Diabetic Neuropathic Pain in Rats
BACKGROUND Nefopam is a centrally acting non-opioid analgesic agent. Its analgesic properties may be related to the inhibitions of monoamine reuptake and the N-methyl-D-aspartate (NMDA) receptor. The antinociceptive effect of nefopam has been shown in animal models of acute and chronic pain and in humans. However, the effect of nefopam on diabetic neuropathic pain is unclear. Therefore, we inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006